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Abstract. One native source of quality deterioration in medical imaging, and especially in our case optical
coherence tomography (OCT), is the turbid biological media in which photon does not take a predictable path
and many scattering events would influence the effective path length and change the polarization of polarized
light. This inherent problem would cause imaging errors even in the case of high resolution of interferometric
methods. To address this problem and considering the inherent random nature of this problem, in the last
decades some methods including Monte Carlo simulation for OCT was proposed. In this approach simulation
would give us a one on one comparison of underlying physical structure and its OCT imaging counterpart.
Although its goal was to give the practitioners a better understanding of underlying structure, it lacks in
providing a comprehensive approach to increase the accuracy and imaging quality of OCT imaging and
would only provide a set of examples on how imaging method might falter. To mitigate this problem and to
demonstrate a new approach to improve the medical imaging without changing any hardware, we introduce
a new pipeline consisting of Monte Carlo simulation followed by a deep neural network.
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1 Introduction

With the advent of deep learning methods in the last decade, biomedical imaging has seen

special attention in the methods for segmentation and image quality enhancement.Although

these methods could be beneficial in real world settings, it’s quite difficult to estimate their

accuracy and applicability, given the underlying physical structure is unknown.

To address this problem we propose an end to end approach to create a OCT results and

its corresponding physical structure. Given these two pair we can train the network to infer

the underlying structure, given the OCT imaging simulation results.

In section 2 we will review the past works on simulating the OCT and the contribution of

these methods and their drawbacks and their applicability. In section 3 we will get into the

details of Monte Carlo simulation of our work and different techniques we used and how
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we verified our results. In 4 we define our neural network and how it was trained. In 5 we

present the results from Monte Carlo simulation and neural network results. In 6 we give a

summery of our work and give a glimpse of how it can be improved upon and be used for

real world settings.

2 Previous Works

One of the first works on Monte Carlo simulation of OCT was in.1 In this work the most

straightforward implementation OCT simulation was presented. Another method used for

simulation of light propagation for flurescence molecular tomography and bioluminescence

tomography applications2 is Radiative Transfer Equation (RTE).3 One of the main draw-

backs of RTE method is very high computational load of this method. Some methods have

been proposed to estimate the solution and reduce the computation cost, including diffusion

approximation4 and spherical harmonic method.5 One of the main advantages of Monte

Carlo method is the feasibility of simulation of turbid and complex media. The main draw-

backs of Monte Carlo method are false scattering and uncertainty and error in the final result

which can be mitigated by increasing the iterations.

To be able to simulate the result on mesh structures6 and7 have proposed voxel based meth-

ods.

In8 the RTE method for light propagation in a simple biological media is investigated. In9

the effect of Gaussian beam shape of LASER light in Monte Carlo simulation is discussed.

Even though in high accuracy simulation, the Gaussian beam shape of source should be

accounted for, because it’s mainly important until the first scattering, its effect is minimal.

The effect of depolarization and change of polarization of light of polarized light incident unto
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the media is investigated in Polarization Sensitive Optical Coherence Tomography (PSOCT).

.

3 Monte Carlo Simulation

Before we get into the Monte Carlo simulation of polarized light we should consider the

terms under which the Monte Carlo simulation is valid. To be able to use the transfer matrix,

scattering matrix and linear propagation direction we should be able to use geometric optics.

For this reason all the discontinuities and particles of interaction should be much less than

the light wavelength. When this term is not satisfied, we should solve a scattering problem

for the incident wave and calculate the scattering direction probability in this way. Also when

the scattering from a single particle is being investigated, the effect of all other particles are

neglected. To be able to use this simplification, the density of scattering particles in the

media should be low.

Monte Carlo simulation of polarized light follows a straight forward convention. First we will

discuss the general procedure of light propagation and scattering. Then we will investigate

the changes of light polarization in turbid media.

In each step for each photon first the step length is determined according the Beer-Lambert’s

extinction law. The photon weight is adjusted at the end of each step according the covered

distance and extinction factor.

To account for the change of polarization we follow the method described in.10 In this paper

the Coherent Back Scattering (CBS) formula is used to take the change of polarization

into account. In this method the xx, xy, helicity preserving and diagonal polarization are
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calculated as 1.

pxx(xs, ys) =
∑
n

W [1 +
Q(xs, ys)

I(xs, ys)
],

pxy(xs, ys) =
∑
n

W [1− Q(xs, ys)

I(xs, ys)
],

p++(xs, ys) =
∑
n

W [1 +
V (xs, ys)

I(xs, ys)
],

p+−(xs, ys) =
∑
n

W [1− V (xs, ys)

I(xs, ys)
]

(1)

Due to scattering and optical activity, the degree of polarization will change through the

simulation. The degree of polarization is defined through 2.

DOC =
2Real[E⊙(xs, ys)E

∗
⊗(xs, ys)]

|E⊙(xs, ys)|2 + |E∗
⊗(xs, ys)|2

(2)

Taking 2 into 1 will yield the equation 3.

pxy(xs, ys).pcxy(xs, ys) =
∑
n

W.DOCxy[1−
Q(xs, ys)

I(xs, ys)
],

p+−(xs, ys).pc+−(xs, ys) =
∑
n

W.DOC+−[1−
V (xs, ys)

I(xs, ys)
]

(3)

Also we have to take the effects of scattering into account. After each scattering event the
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Jones matrix is multiplied by the scattering matrix 4.

S2(θ, ϕ) S3(θ, ϕ)

S4(θ, ϕ) S1(θ, ϕ)

 (4)

In this work the scattering from biological particles are simplified to scattering from a sym-

metrical sphere. Scattering from this sphere is defined according to the Mie theory. The

scattering probability distribution is defined according to 5.

P (θ, ϕ) =
S11(θ).Io + S12(θ).(Qocos2ϕ+ Uosin2ϕ)∫ 2π

0

∫ π

0
[S11(θ)Io + S12(θ)(Qocos2ϕ+ Uosin2ϕ)]sinθdθdϕ

(5)

S11(θ) =
|S2(θ)|2 + |S1(θ)|2

2

S12(θ) =
|S2(θ)|2 − |S1(θ)|2

2

(6)

Another effect we should take into account is the birefringence and optical activity. In10

these steps are discussed in details. In this part to take the effect of both phenomena the

Jones N matrix11 formalism is used.

To speed up the simulation, partial photon10 was used. Due to the large number of required

simulations and taking the iid nature of each photons, in respect to each others, into account,

it is evident we can use the parallel programming paradigm to speed up the simulation. There

are two main approaches to parallel programming, multiprocessor programming on CPU and

utilization of Nvidia’s CUDA12 library for parallel programming on GPU.

To speed up the programming, Numba13 library with backend of CUDA in python was used.
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By this approach the simulation time reduces by orders of magnitude.

To primarily verify the Monte Carlo simulation results, we first get the reflection by degree

of a perpendicular incident light to a turbid media. This reflection can be calculated form14

results. The reflection of TE wave is in equation 7.

rTE
hs =

µTE
eff (θi)k

i
z − keff

z

µTE
eff (θi)k

i
z + keff

z

(7)

In which the effective quantities are calculated by solving the Green’s dyadic equations

and calculating the aggregate effect of half space consist of multitudes of planes with spherical

scattering particles using Ewal-Oseen14 formalism 8.

µTE
eff (θi) = 1 + iγ

S1
−(θi)

cos2θi

ϵTE
eff (θi) = 1 + iγ[2S1

+(θi)− S1
−(θi)tan

2(θi)

Sm
+ (θi) =

1

2
[S(0) + Sm(π − 2θi)]

Sm
− (θi) = S(0)− Sm(π − 2θi)

(8)

We compare this result with simulation output. In 1 the comparison of theoretical and

simulation results are shown.

4 Neural Network

Given the Monte Carlo simulation results for polarization sensitive optical coherence tomog-

raphy and having the underlying physical structure of the system under investigation, we

know try to use a neural network to model the OCT imaging procedure and the physical
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Fig 1 The reflection ration of incident light for different degree of reflections for perpendicular incident light.

system altogether.

What we do in this paper is infer the optical properties of a single layer turbid system with

optically active, birefringent, scattering media from the PSOCT simulation measurements

for different polarizations. The defined problem in this section is the inference from a higher

dimensional measurement space to low dimension optical property space. For this purpose

we propose an auto encoder with residual connections architecture. This network gives the

ability to infer the optical properties from the latent space of measurements and residual

connections to infer higher frequency data for capturing the information in higher frequency

part of the data 2. The network was trained using ADAM optimizer and annealing learning

rate after each 500 steps. The training and test split is 0.7 and 0.3 respectively. We use L2

loss of the error of in comparison to real optical property.
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Fig 2 The neural network consists of a variational encoder with residual connections architecture. The input
to this network is the PSOCT measurements and the output is the optical properties.

Fig 3 The simulation result for co polarization of linearly polarized incident light. Vertical axis photon
depth and horizontal axis is different radius from incident position. The photon wavelength is 632 nm and
each segment shows 4 micrometers.

5 Results

Monte Carlo simulation of a single layer media was done using the methods discussed in

3. The Mie scattering factors for sphere particles with 70 nm radius was calculated. Light

with linear and circular polarization was incident to the media and in 3 and 4 the resulting

photon which has reached the detector are shown.

These figures show the loss of co polarization due to scattering in the media.
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Fig 4 The simulation result for co polarization of circularly polarized incident light. Vertical axis photon
depth and horizontal axis is different radius from incident position. The photon wavelength is 632 nm and
each segment shows 4 micrometers.

Fig 5 L2 train loss during training on the result of Monte Carlo simulation results.

Fig 6 L2 validation loss during training on the result of Monte Carlo simulation results.
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The figures 5 and 6 show the training and validation loss during train steps. As it is

evident, The network can predict the optical property, refractive index in this case, with

good accuracy.

6 Conclusion

In this work we introduced a new approach to increase the accuracy and resolution of OCT

methods without any hardware addition to the OCT setup. In this end to end approach the

result of OCT imaging was simulated using Monte Carlo simulation on GPU and its results

were used for neural network training. The network was trained on a simple physical media,

but the method can be extended, given proper hardware is in hand. Adding the ray tracing

and generating procedurally generated structures and training the network on this data,

can enable the real world application and open a new venue for physically based resolution

enhancement for biomedical imaging methods, especially OCT.
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